
An LSTM-Based Neural Network Architecture for
Model Transformations

Loli Burgueño
IN3, Open University of Catalonia

Institut LIST, CEA, Université Paris-Saclay
lburguenoc@uoc.edu

Jordi Cabot
ICREA

IN3, Open University of Catalonia
jordi.cabot@icrea.cat

Sébastien Gérard
Institut LIST, CEA, Université Paris-Saclay

sebastien.gerard@cea.fr

Abstract—Model transformations are a key element in any
model-driven engineering approach. But writing them is a
time-consuming and error-prone activity that requires specific
knowledge of the transformation language semantics.

We propose to take advantage of the advances in Artificial
Intelligence and, in particular Long Short-Term Memory Neural
Networks (LSTM), to automatically infer model transformations
from sets of input-output model pairs. Once the transformation
mappings have been learned, the LSTM system is able to au-
tonomously transform new input models into their corresponding
output models without the need of writing any transformation-
specific code. We evaluate the correctness and performance of
our approach and discuss its advantages and limitations.

Index Terms—MDE, model transformations, LSTM ANN

I. INTRODUCTION

AI is evolving fast thanks to the advances in hardware and

the arrival of the big data era. A recent survey [1] predicts

that “AI will outperform humans in many activities in the next

ten years, such as translating languages, writing high-school

essays, or working as a surgeon”.

AI is also starting to impact the software development pro-

cesses itself.In fact, as of today, there are initiatives claiming

the (prospective) applications of AI in the different phases of

the software development lifecycle [2], from the requirement

analysis and design to the development, testing, deployment,

maintenance, etc. The main goal is always the same: help soft-

ware engineers develop software easier, faster and less error-

prone while being able to manage more complex problems. In

this sense, the concepts of intelligent software and cognified

software engineering [3], [4] have been introduced.

However, few approaches target model-driven engineering

(MDE). Some exceptions are [5], to generate UML class

diagrams from natural language specifications, [6] to col-

laboratively build domain models using chatbots, and [7] to

provide a tool for classifying web images as UML static

diagrams. Still, we are not aware of the existence of any

solution addressing a key element of any MDE approach:

model transformations.

Indeed, writing model transformations is an important but

also time-consuming and error-prone process. And while there

is a myriad of proposals to facilitate the definition of model

This work is supported by Spanish Research project TIN2016-75944-R and
CEA in the context of the Modelia initiative.

transformations, we lack a solution that empowers non-expert

users to autonomously transform new input models into their

corresponding output models without the need of writing any

transformation-specific code.

This paper proposes such a solution based on Machine

Learning (ML). ML, and in particular, its supervised learning

methods, enables machines to learn patterns from existing data

source and make predictions about new data. Given a set of

input-output data, an ML algorithms would be able to learn

the mappings between the sample inputs and the outputs and,

then, predict for new input data, what the output would be.

The simplest example in this context is language translation.

The first attempt to translate text from one language to

another was to translate word by word. Afterwards, companies

hired linguists to create language-specific rules and started

using Statistical Machine Translation (SMT). Currently, big

companies such as Google generate translations by means of

Artificial Neural Networks (ANNs) [8]. We adopt a similar

approach for the model transformation challenge.

In this sense, we suggest a change of paradigm in the way

we approach model transformation problems and propose to

rely on a ML-based framework using a particular type of

ANNs, Long Short-Term Memory (LSTM) ANNs to derive

transformations from sets of input/output models given as

input data for the training phase.

The rest of the paper is organized as follows. Section II

introduces some basic concepts. Section III describes the main

components of our approach, which we evaluate in Section IV.

In Section VI, we discuss the limitations of our approach.

Section VII presents the related work and, finally, Section VIII

concludes our paper.

II. BACKGROUND IN ARTIFICIAL NEURAL NETWORKS

An ANN can be seen as an structure composed by neurons

with directed connections between them. Each neuron is a

mathematical function that receives a set of values through

its input connections and computes an output value that

is taken by another connection and transferred to another

neuron. Two specific types of neurons are the input and output
neurons which do not have input predecessors or successors

respectively and serve only as input and output interfaces to the

ANN. Connections have associated weights (i.e., real numbers)

that the neurons use and that are adjusted during the learning

294

2019 ACM/IEEE 22nd International Conference on Model Driven Engineering Languages and Systems (MODELS)

978-1-7281-2536-7/19/$31.00 ©2019 IEEE
DOI 10.1109/MODELS.2019.00013

Authorized licensed use limited to: IMT ATLANTIQUE. Downloaded on January 20,2023 at 09:45:28 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Supervised learning: Phases

process with the purpose to increase or decrease the strength

of the connection. Thus, from an analytical point of view,

ANNs are complex mathematical functions composed by other

functions.

Most ANNs are part of a supervised learning procedure

where a tagged set of example input-output pairs are used

to derive a function that can generate or predict new outputs

from completely new inputs. That it, supervised learning has

two main phases: training and predicting (transforming in our

case). Fig. 1 shows both of them. During training, the input and

output pairs from the dataset are used to “teach” the system

until it learns. Once trained, we can give the ANN an input

and it produces its corresponding output.

For the training phase, the dataset is split into three subsets:

training, validation and test dataset. The training dataset

contains most of the inputs-output pairs and is used to train the

ANN (i.e., to adjust the weights of the ANN’s connections).

The test dataset is only used once the training has finished to

check the quality of the ANN’s predictions for inputs it has

not seen before, and hence to study its accuracy1 (correctness).

The validation dataset plays a similar role but during the

training process to control that the learning process is correct.

More specifically, it is used to check that any accuracy increase

over the training dataset also yields to an accuracy increase

over the validation dataset. Otherwise (new training data does

not result in improved accuracy), we say that the ANN is being

overfitted2. The overfitting is measured by means of the metric

called validation loss.

III. APPROACH

This section introduces our approach. We first address the

global architecture of the ANN framework we propose and

then we talk about its potential configuration and the model

pre- and postprocessing steps required to use the ANN in a

model-based setting.

A. Global Architecture

Among all the artificial neural network family types and

configurations [9] we have chosen Recurrent Neural Networks

(RNN) as our subject of study. In RNNs, the neurons are or-

ganized in layers with forward connections (i.e., to neurons in

the next layers) as well as back propagation connections (i.e.,

to neurons of the same layer or previous layers). This back-

propagation mechanism in which the outputs of neurons are

fed back into the network again makes the ANN “remember”

some information from the previous step. This kind of neurons

are called memory cells and make the ANNs be aware of their

1The accuracy is calculated as the percentage of predictions our model gets
right out of the total number of predictions

2In statistics, overfitting is the situation in which the ANN is so closely
fitted to the training data that it is not able to generalize and make good
predictions for new data.

context. In our case, this kind of cells are helpful to remember,

for instance, the name of a variable previously declared.

Long Short-Term Memory (LSTM) neural networks [10]

are a specific kind of RNN which have a longer “memory”

than their predecessors and are able to remember their context

throughout different inputs. For instance, if we were transform-

ing lines of code (one at a time), each line of code would be an

input for the network. At some point in time, traditional RNNs

would be able to remember only parts of the current input (line

of code), while LSTMs are able to remember previous lines

of code too. Clearly, in our transformation scenario, we may

need this long-term memory to remember previous mappings

as part of a more complex mapping pattern. Therefore, we have

chosen LSTM neural networks as the most suitable networks

to solve the problem of data transformation.

Nevertheless, after exhaustively testing a transformation

architecture based on single LSTMs, we realized that not even

LSTMs alone were enough to generate good results. Instead,

we adopted a more complex framework based on an Encoder-

Decoder [11] architecture that has been proven to be the most

effective for dealing with translation problems.

This architecture is composed of two RNN neural networks

(of type LSTM in our case for the reasons described above):

one that reads the input data (which is of variable size) and

encodes it into a fixed-length numeric vector, and a second

one that receives this vector and predicts (transforms in our

case) the output data (which is again of variable size).

In the literature, most of the works using this encoder-

decoder architecture are applied to sequence-to-sequence

transformations, for example, for natural language translation.

In those cases, the raw input data that needs to be embedded

is a sentence (i.e., a sequence of words). In our initial exper-

iments, we found out this representation to be too simplistic

since we were losing many of the structural information of

the models. Therefore, we have settled for a more advanced

tree-to-tree architecture (see Section III-C). As a consequence,

apart from the encoder and decoder, we need a layer to embed

the input tree (representing the model after the preprocessing

phase) into a format readable for the encoder. This input tree
embedding layer is used to transform our input models in

their tree-form into the numeric vectors which are the input

to the LSTM encoder. We also need an output layer that takes

the numeric vectors produced by the decoder and obtains the

predicted (transformed) output model in its tree-form to be

then passed on the postprocessing task to get the final output

model. The output tree extraction layer does this.

Finally, our ANN architecture also includes an attention

mechanism. Attention mechanisms applied to encoder-decoder

architectures are placed as an intermediate layer between the

encoder and the decoder. This layer allows the decoder pay

more attention to specific parts of the fixed-size vector it

receives. This is, it allows the decoder to assign more value to

specific parts of the model. The most important thing is that

attention mechanisms are fully independent when it comes to

decide which parts of the input models are more important,

i.e., they automatically learn to which parts the decoder has to

295

Authorized licensed use limited to: IMT ATLANTIQUE. Downloaded on January 20,2023 at 09:45:28 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. ANN model transformation architecture

pay more attention during the output model generation without

any external guidance.

Fig. 2 shows inside the dotted box the complete picture of

the ANN MT architecture described so far.

B. Configuration

All the components of our architecture have certain param-

eters that need to be configured to optimize the training phase

depending on the specific problem they are going to solve. The

core ones are the number of layers in each ANN, the number of

neurons in each layer, the initial connection weights, the learn-

ing rate, the decay, the optimization algorithm, the dropout

rate and the attention mechanism. Due to space limitations we

cannot provide the full details of each parameter but we do

show here the values we have used for them. Note that, users

could change this default configuration if they wish but they

can just use ours if they want to skip this configuration phase.

Both the encoder and decoder have one layer each with

256 neurons. The connection weights are initialized following

a continuous uniform distribution on the interval [−1, 1]. The
learning rate is 0.01 (i.e., the weights are updated a 1% in each

iteration), with a decay of the 80% when the validation loss

does not decrease (i.e., when we detect that overfitting might

be taking place). We have used the optimization algorithm

Adam [12] to update parameters such as the weights to

accelerate the convergence of the ANNs and thus, the training

process. To avoid the overfitting, we have set a dropout rate of

0.5, which means that 50% of randomly selected the neurons

are ignored in each iteration and thus, the weights of their

connections will not be updated.

The embedding layer contains 256 neurons and receives the

preprocessed models in its one-hot encoding representation.

The output layer contains 256 neurons, too. The attention

mechanism we use is the one proposed by Chen et al. in their

work [13] for tree-to-tree translations.

C. Model pre- and post-processing

As said before, the models have to be preprocessed an

represented as trees before being fed to the ANN. In the

representation we have chosen, each model is represented as

an independent tree. The root contains the keyword MODEL,
and its children are the model elements, which can be either

OBJECTSs or ASSOCIATIONs. Each object has a unique

identifier which is represented as a child, and optionally,

it has another child with the keyword ATTRIBUTES from

where its attributes hang. Each attribute has two children with

the attribute’s name and its value. Each association has two

children, one with the name of the association (if there are

more than two associations in the metamodel with the same

name, they are automatically renamed first), and another child

with the keyword BETWEEN from where the two variables of

the objects the association links. For simplicity, only binary

associations are considered.

For instance, Fig. 3 shows a model and its tree representa-

tion. As a final step, these trees are encoded in a JSON file,

which is the input to our program.

Fig. 3. Class model and its associated tree

After converting the models to trees, we need to apply a

normalization process to overtake two limitations that ANNs

have.

The first one is what we call the dictionary problem. ANNs

are able to “understand” only the words that are present in

the dictionary that they build from the dataset. Thus, each

word not present in the dictionary (i.e., not present in the

models used for training) are not recognized by the network

which treats them as the token UNK (short for unknown).

Note that, when translating natural language, which is the

most common use of the encoder-decoder architecture, this

is not a problem since the dictionary contains all the words

from the source and target languages. In our case, variable

names and attribute values can be arbitrary string, which would

make our dictionary infinite. To solve this problem, both for

training and predicting (transforming), we rename all variables

and attribute values to a closed set of words. For instance:

variables={A, B, C, D, E, ...} and attValues={x, y, z, t, ...}.

Then, the models used for training only contain a minimum set

of tokens which are known by the network. When predicting

(transforming) new models, the inverse operation is performed

as a postprocessing step to the output of the ANN to generate

the proper output models with the right variable and attribute

names.

The second one is an optimization to remove model sym-

metries, and thus, reduce the size of the training dataset. Given

that we represent models as trees, a different ordering of the

model elements in the tree would be considered by the ANN

as a different input model and therefore it would require

an additional training. To avoid this, we remove potential

symmetries by defining a canonical form for the tree-based

296

Authorized licensed use limited to: IMT ATLANTIQUE. Downloaded on January 20,2023 at 09:45:28 UTC from IEEE Xplore. Restrictions apply.

model representation. In particular, right now we sort the

model elements in alphabetical order according to its pre-

order traversal—in the future we will explore how to deal with

model symmetries with approaches such as [14]. Again, this

task has to be done as a preprocessing step for every model

both in the training and predicting phases.

IV. EVALUATION

We present a preliminary study of the results of our ap-

proach in terms of correctness and performance. To simplify

the presentation, we use the well-known model transformation

example Class2Relational [15].

The experiments have been executed in a machine with

Ubuntu 16.04, an Intel i7 8th generation processor, 16Gb of

RAM memory and no support for Nvidia CUDA3.

A. Quality

As explained in Section II, the correctness of ANNs is

studied through its accuracy and overfitting (being the latter

measured through the validation loss). The accuracy should be

as close as 1 as possible while the validation loss as close to

0 as possible.

The accuracy is calculated comparing for each input model

in the test dataset whether the output of the network corre-

sponds with the expected output. If it does, the network was

able to successfully predict/transform.

In Fig. 4 we show how the accuracy grows and the loss

decreases with the size of the dataset, i.e., the more input-

output pairs we provide for training, the better our software

learns and predicts (transforms). In this concrete case, with a

dataset with 1000 models, the accuracy is 1 and the loss 0

(meaning that no overfitting was taking place), which means

that the ANNs are perfectly trained and ready to use. Note that

we show the size of the complete dataset but, we have split it

using an 80% of the pairs for training, a 10% for validation

and another 10% for testing.

Fig. 4. Variation of accuracy and loss during training

B. Performance

There are two performance dimensions we need to consider:

how long does it take for the training phase to complete

3Using the GPU that an NVIDIA Graphic Card provides with CUDA
usually speedups the training process and improves its scalability, but we
felt that it was more realistic to assume that our target user would not have
such specific equipment even if it is becoming more and more common

and; once the network has been trained, how long it takes to

transform an input model with it. Note that the training needs

to be performed only once per each transformation scenario.

1) Training performance: The two main factors that impact

the training time are the size of the training dataset (i.e., the

number of models that compose the dataset) and the average

size of each models in it.

Fig. 5 shows the performance of the training phase for the

Class2Relational example depending on the size of the dataset

and its models. On the left-hand side we can see how the

training time grows linearly when increasing the size of the

training dataset. Note that we were able to reach maximum

accuracy for this example by using less models than those

used in the figure (precisely we only needed 1000 as shown

in Fig. 4) but we added additional ones to test its performance

with more complex transformations. On the right-hand side we

study the impact of growing the average size of the models.

We have fixed the size of the training dataset to 100 pairs of

input-output models and have varied the number of elements

in each model (ranging from 1 to 30). As shown in the

figure, there is a quadratic growth when increasing the size

of the models. While this behaviour is worse than the former,

it is less important as, based on our experiments, accuracy

improvements are more linked to larger datasets than to larger

models as ANN learn a lot by intensive repetition.

Fig. 5. Impact of the size of the training dataset (left) and of the size of the
models (right) when training

2) Transformation performance: After the training, we

have evaluated the transformation time of the network on a

set of input models and observed that the time grows linearly

with the number of model elements.

As a reference, we have also compared the execution time of

our ML-based transformation with the execution time of the

ATL version of the same transformation [15]. Thought ours

was a little bit slower for the models we tested, time is within

the same order of magnitude (less than a second for models

up to 30 elements to be transformed) and, therefore, we do not

see this as a negative aspect for ML-based transformations.

V. REPLICABILITY PACKAGE

To facilitate the replication of our study, we provide a Git

repository for researchers interested in repeating or comple-

menting our evaluations. The repository includes the source

code, the trained ANNs, the model dataset used for training

297

Authorized licensed use limited to: IMT ATLANTIQUE. Downloaded on January 20,2023 at 09:45:28 UTC from IEEE Xplore. Restrictions apply.

and the Java program that we have used to automatically

generate this dataset4

VI. DISCUSSION

We believe our results show that a ML-based approach for

MT is feasible but obviously there are a number of open

challenges to be solved before it can actually be used in

practice. Here we discuss the main ones and provide potential

ways to address them in the future.

1) Size of the training dataset: ANNs require a consid-

erably amount of data for training. In our case, this means

that learning a model transformation may require a sizeable

number of input-output models (the more complex is the

transformation to learn, the more models are needed). While

there is a number of model repositories available, finding

enough model samples for a given domain is still clearly a

challenge that could affect the quality of the results.

Strategies to mitigate this issue would include data augmen-

tation techniques (e.g., reusing model mutation procedures or

employing Generative Adversarial Networks (GAN) [16] to

generate further examples for a core set) or apply transfer

learning5 to avoid starting the learning process from scratch.

Moreover, given the repetitive nature of many model trans-

formations, pre-trained networks for typical transformation

scenarios could be used instead as starting point to generate

an optimal learning model for our use case with less training

data required.

2) Diversity in the training set: Related to the point above,

the quality of the training is also tied to the diversity of

the dataset. An ANN can only predict scenarios that follow

a pattern that it has seen before. Coverage metrics for the

input/output metamodels [18] and the use of graph kernel

techniques [19] could give feedback to the user regarding the

need for adding more samples to cover for corner cases.

3) Computational limitations of ANNs: ANNs are still

a field under heavy development with better learning con-

tinuously algorithms presented. However, as of today, they

still have some limitations. One is their inability to perform

mathematical operations. This implies our approach cannot

predict values in the target model that should be the result of

a mathematical computation of values from the input model.

Given the importance of such challenge in many domains, we

are aware of several groups working on this issue and hope to

see new developments soon.

4) Generalization problem: ANNs are not good at gen-

eralizing and predicting output solutions for input models

very different from the training distribution it has learn from.

For instance, ANNs trained on small models typically have

problems to predict well large models. This would require

training the ANN with all possible model sizes for optimal

results. This is not feasible so an alternative solution we have

employed is to train the network with small models (also

easier to find/generate) and, then, when faced with the need to

4https://github.com/modelia/ann-for-mts.git
5Transfer learning is the improvement of learning in a new task through the

transfer of knowledge from a related task that has already been learned [17].

predict larger ones split them in chunks, transform the chunks

independently and then put the pieces back together again.

Dependencies between the chunks may complicate this solu-

tion but note that this problem has already been successfully

addressed for the parallel transformation of models [20].

5) Social acceptance: Social factors may also hamper the

adoption of a “black-box” ML-based transformation approach.

Users may be reluctant to trust a piece of software that they

are not able to understand. As done in other AI applications,

adding explanation capabilities to the system will be a must.

6) ML pipelines for MTs: One of the challenges we faced

was putting in place the set of AI libraries and frameworks we

needed and adapt them to understand, read and write models.

We believe our platform and "model-based ML data pipeline"

will, at the very least, facilitate follow-up works (by us or

by other interesting researchers) in this area and speed up the

time it takes to prepare, run and evaluate ML experiments in

MDE.

VII. RELATED WORK

The typical solution to tackle model transformation prob-

lems is to write a transformation program using a specific

transformation language (e.g., just looking at the model trans-

formation field we have plenty of well-known examples such

as ATL, QVT and ETL). Still, the adoption of these languages

in industry is limited. MT languages are not very intuitive to

non-expert users and their IDEs usually lack the advanced

facilities (e.g. nice debugging tools) required to develop trans-

formations.

Model Transformation By-Example (MTBE) is an attempt

to simplify the writing of exogenous model transformations

[21]–[25]. In an MTBE approach, users have to provide source

models, their corresponding target models as well as the

correspondence between them—for which a correspondence

language has to be used. From this, the MTBE approach

generates partial mappings that form the basis of the trans-

formation. Although these approaches free the user from

learning a full transformation language, she has to still learn

a correspondence language and manually build/complete the

generated transformation mappings.

Kessentini et al. [26], [27] use search-based techniques

to generate target models even if there is a limited number

of examples available. The basic idea is to find among the

examples the ones that are probably the closest match to the

source model the user is trying to transform. Nevertheless,

similar to the previous MTBE approaches they require the

existence of transformation traces for the available examples

so that they can generate the optimal solution.

Baki et al. [28] are able to discover more complex trans-

formations by splitting the transformations traces in pools and

applying genetic algorithms. Again, transformation traces are

needed for the discovery phase.

In contrast to previous works, our approach does not require

any kind of correspondence or tracing information to be

provided by the user or domain expert and learns purely from

298

Authorized licensed use limited to: IMT ATLANTIQUE. Downloaded on January 20,2023 at 09:45:28 UTC from IEEE Xplore. Restrictions apply.

the couples of input/output models. This enables non-expert

users to employ our approach.

Model transformation is just an instantiation of the more

general problem of data transformation, which shows up across

many fields of computer science (e.g., databases, XML, model-

ing, and big data). This topic has been largely addressed by the

(relational) database community, especially dealing with the

heterogeneity of the data sources and the impedance mismatch

problems [29]–[31]. Nevertheless, ML-based approaches have

not been attempted either in that community. We hope our

results can be replicated in that context as well.

The programming research community has been much more

active in the area of mixing ML and (code) transformation.

In [13], Chen et al. use neural networks to translate code

from one programming language to another. We have learn

a lot from this work. Nevertheless, given that we transform

models and not code, our work has adapted some of the ideas

from [13] in several points such as the encoding for inputs and

outputs, the need of a pre- and postprocessing steps and the

parametrization of the neural networks to better fit the model

transformation problem.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a ML architecture based

on LSTM neural networks for automatically inferring MTs.

We plan to continue this work along a number of different

directions, mainly addressing some of the challenges discussed

above. In particular, we plan to focus on the performance

and usability of our approach (e.g. developing heuristics to

help users configure and optimize the training phase, including

recommendations on the size of the datasets) and study its ap-

plicability to similar domains (like model-to-text transforma-

tions). In parallel, we hope to collaborate with the model trans-

formation community at large to better understand the role

approaches like ours can play in the transformation domain.

ML will not completely replace transformation languages but

could make them redundant in a variety of scenarios. Better

understanding the trade-offs of each transformation strategy

(ML-based, by example, pure MTLs,..) would benefit us all.

REFERENCES

[1] K. Grace, J. Salvatier, A. Dafoe, B. Zhang, and O. Evans, “Viewpoint:
When will AI exceed human performance? Evidence from AI experts,”
J. Artif. Intell. Res., vol. 62, pp. 729–754, 2018.

[2] D. Lo Giudice, “How AI will change software development and appli-
cations,” https://www.nhaustralia.com.au/documents/AI_report.pdf.

[3] T. Xie, “Intelligent software engineering: Synergy between AI and
software engineering,” in Proc. of ISEC’18, 2018, p. 1:1.

[4] J. Cabot, R. Clarisó, M. Brambilla, and S. Gérard, “Cognifying model-
driven software engineering,” in Proc. of the Collocated Workshops @
STAF’17, 2017, pp. 154–160.

[5] M. Ibrahim and R. Ahmad, “Class diagram extraction from textual
requirements using natural language processing (NLP) techniques,” in
Proc. of the 2nd International Conference on Computer Research and
Development, 2010, pp. 200–204.

[6] S. Pérez-Soler, E. Guerra, and J. de Lara, “Collaborative modeling
and group decision making using chatbots in social networks,” IEEE
Software, vol. 35, no. 6, pp. 48–54, 2018.

[7] V. Moreno, G. Génova, M. Alejandres, and A. Fraga, “Automatic
classification of web images as UML diagrams,” in Proc. of CERI’16,
2016, pp. 17:1–17:8.

[8] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah,
M. Johnson, X. Liu, L. Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa,
K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa,
A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and J. Dean, “Google’s
neural machine translation system: Bridging the gap between human and
machine translation,” CoRR, vol. abs/1609.08144, 2016.

[9] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Networks, vol. 61, pp. 85 – 117, 2015.

[10] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[11] K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
RNN encoder-decoder for statistical machine translation,” in Proc. of
EMNLP’14, 2014, pp. 1724–1734.

[12] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. ICLR’15, Y. Bengio and Y. LeCun, Eds., 2015.

[13] X. Chen, C. Liu, and D. Song, “Learning neural programs to parse
programs,” CoRR, vol. abs/1706.01284, 2017.

[14] A. Rensink, “Canonical graph shapes,” in Proc. of the ESOP’04, 2004,
pp. 401–415.

[15] AtlanMod (Inria), “Class to relational transformation example,”
https://www.eclipse.org/atl/atlTransformations/#Class2Relational.

[16] C. Bowles, L. Chen, R. Guerrero, P. Bentley, R. N. Gunn, A. Hammers,
D. A. Dickie, M. del C. Valdés Hernández, J. M. Wardlaw, and
D. Rueckert, “GAN augmentation: Augmenting training data using
generative adversarial networks,” CoRR, vol. abs/1810.10863, 2018.

[17] E. S. Olivas, J. D. M. Guerrero, M. M. Sober, J. R. M. Benedito, and
A. J. S. Lopez, Handbook Of Research On Machine Learning Applica-
tions and Trends: Algorithms, Methods and Techniques. Hershey, PA:
Information Science Reference - Imprint of: IGI Publishing, 2009.

[18] O. Semeráth and D. Varró, “Iterative generation of diverse models for
testing specifications of dsl tools,” in Proc. of FASE’18, 2018, pp. 227–
245.

[19] R. Clarisó and J. Cabot, “Applying graph kernels to model-driven
engineering problems,” in Proc. of MASES@ASE’18, 2018, pp. 1–5.

[20] L. Burgueño, M. Wimmer, and A. Vallecillo, “A linda-based platform for
the parallel execution of out-place model transformations,” Information
& Software Technology, vol. 79, pp. 17–35, 2016.

[21] G. Kappel, P. Langer, W. Retschitzegger, W. Schwinger, and M. Wim-
mer, “Model transformation by-example: A survey of the first wave,”
in Conceptual Modelling and Its Theoretical Foundations: Essays Ded-
icated to Bernhard Thalheim on the Occasion of His 60th Birthday,
2012, pp. 197–215.

[22] D. Varró, “Model transformation by example,” in Proc. of MODELS’06,
2006, pp. 410–424.

[23] M. Wimmer, M. Strommer, H. Kargl, and G. Kramler, “Towards model
transformation generation by-example,” in Proc. of HICSS’07, 2007, p.
285.

[24] I. García-Magariño, J. J. Gómez-Sanz, and R. Fuentes-Fernández,
“Model transformation by-example: An algorithm for generating many-
to-many transformation rules in several model transformation lan-
guages,” in Proc. of ICMT’09, 2009, pp. 52–66.

[25] Z. Balogh and D. Varró, “Model transformation by example using
inductive logic programming,” Software and System Modeling, vol. 8,
no. 3, pp. 347–364, 2009.

[26] M. Kessentini, H. A. Sahraoui, M. Boukadoum, and O. Benomar,
“Search-based model transformation by example,” Software and System
Modeling, vol. 11, no. 2, pp. 209–226, 2012.

[27] M. W. Mkaouer and M. Kessentini, “Model transformation using multi-
objective optimization,” Advances in Computers, vol. 92, pp. 161–202,
2014.

[28] I. Baki and H. A. Sahraoui, “Multi-step learning and adaptive search for
learning complex model transformations from examples,” ACM Trans.
Softw. Eng. Methodol., vol. 25, no. 3, pp. 20:1–20:37, 2016.

[29] P. A. Bernstein and S. Melnik, “Model management 2.0: Manipulating
richer mappings,” in Proc. of SIGMOD’07, 2007, pp. 1–12.

[30] J. F. Terwilliger, P. A. Bernstein, and A. Unnithan, “Automated co-
evolution of conceptual models, physical databases, and mappings,” in
Proc. (ER’10), 2010, pp. 146–159.

[31] P. A. Bernstein, J. Madhavan, and E. Rahm, “Generic schema matching,
ten years later,” in Proc. of VLDB’11, vol. 4, no. 11, 2011, pp. 695–701.

299

Authorized licensed use limited to: IMT ATLANTIQUE. Downloaded on January 20,2023 at 09:45:28 UTC from IEEE Xplore. Restrictions apply.

