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Disclaimer

 Two parts

– Descriptive

• Hafedh Mili, Imen Benzarti, Amel Elkharraz, Ghizlane

ElBoussaidi, Yann-Gaël Guéhéneuc, and Petko Valtchev ; 

Discovering Reusable Functional Features in Legacy Object-

oriented Systems ; Transactions on Software Engineering, vol. 

49, no. 7, pp. 3827–3856, IEEE CS Press, 2023

– Prospective

• Luca Scistri’s on-going research work for his master thesis on 

refactorings class hierarchies using FCA and features
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INTRODUCTION
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Context

 OOP

– Typically, Java

 Single inheritance of classes

 Multiple inheritance of interfaces
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Context

 Problem with Java (and others)

– Inheritance plays two different roles

• Typing

• Reuse
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Context

 Favour composition 
over inheritance

– Well-known solution
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Main Claim

 We should distinguish completely 

inheritance and typing

 We should distinguish typing hierarchies 

from reuse hierarchies
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Main Claim

 We should distinguish completely

inheritance and typing

 We should distinguish typing hierarchies 

from reuse hierarchies

– Fine-grained typing

– Maximum reuse
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Main Claim

 Typing hierarchy  Reuse hierarchy
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Research Questions

 How to find typing/inheritance “misuses”?

 How to refactor these “misuses”?
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BACKGROUND
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Background

 FCA

 Refactoring
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FCA

 Automatic classification technique

 Conceptual abstractions, or (formal) 

concepts, from individual elements

– Based on their properties
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FCA
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FCA
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FCA
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Refactoring

 “[P]rogram
restructuring 
operations”

 “[T]o be behavior 
preserving, provided 
that their preconditions 
are met”
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Refactoring

 Create classes, interfaces

– Including inserting them into existing hierarchies

 Extract class

 Pull Up Method/Field

 Push Down Method/Field
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FEATURE DISCOVERY
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Feature Discovery

 Examples

 Hypothesis

 Related Work

 Algorithm

 Evaluations

 Limitations
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Examples

 Functional features

– Functionally-cohesive 

and (relatively) self-

contained domain 

functionalities
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Examples

Multiple Inheritance

 Each functional feature is 

represented by its own 

class hierarchy

 A class combining several 

features inherits from 

these class hierarchies
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Examples

Delegation

 Each functional feature is 

represented by its own 

class hierarchy

 A class combining several 

features aggregate their 

classes and delegate to 

their methods
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Examples

Ad Hoc

 When developers missed 

useful/reusable features

 When the same feature is, 

inadvertently, duplicated 

several times
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Hypothesis

 We can define and discover (ad hoc) 

functional features using FCA
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Related Work

 Among others

– Feature location

• Thomas Eisenbarth, Rainer Koschke, and Daniel 

Simon ; Locating Features in Source Code ; 

Transactions on Software Engineering, vol. 29, no. 3, 

IEEE CS Press, 2003

– Feature discovery

• Paul W. McBurney, Cheng Liu, and Collin McMillan ; 

Automated Feature Discovery via Sentence Selection 

and Source Code Summarization ; Software 

Evolution and Process, vol. 28, no. 2, Wiley, 2016
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Algorithm

 Relatively straightforward

– Multiple inheritance

– Delegation
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Algorithm

 Reverse inheritance

– Incidence relationship associating a class with 

the union of the elements of its sub-classes
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Algorithm

 Reverse inheritance

– Incidence relationship associating a class with 

the union of the elements of its sub-classes
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Evaluations

 Quantitative

– Precision

– No recall

 Qualitative

– Manual

 Comparison
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Evaluations

Quantitative
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Evaluations

Qualitative
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Evaluations

Comparison

 Wuxia Jin, Ting Liu, Yuanfang Cai, Rick Kazman, Ran Mo, 

and Qinghua Zheng ; Service Candidate Identification from 

Monolithic Systems based on Execution Traces ; 

Transactions on Software Engineering, vol. 47, no. 5, pp. 

987–1007, IEEE CS Press, 2021
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Limitations

 Threats to validity

– Construct: what constitutes an interesting or useful 

functional feature?

– Internal: are we reliable judges of the usefulness of the 

found functional features?

– External: can the results be generalised to other 

programs? Languages?

 No suggestions of refactorings
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FEATURE REFACTORING
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Feature Refactoring

 Examples

 Hypothesis

 Related Work

 Algorithm

 Limitations

 Discussions
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Examples

 Ad hoc feature
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Examples
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Examples

 Ad hoc feature
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Examples

 JHotDraw v5.2

– In CH.ifa.draw.standard

 JavaWebMail v0.7

– In net.wastl.webmail.xml

 PADL Metamodel

– In padl.kernel and padl.kernel.impl
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Examples

JHotDraw CH.ifa.draw.standard
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Examples

JavaWebMail net.wastl.webmail.xml
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Examples

PADL padl.kernel and ….impl
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Hypothesis

 We can use discovered feature and FCA 

(again) to refactor hierarchies
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Related Work

 Among others

– Replacing inheritance with delegation

• Hannes Kegel and Friedrich Steimann ; Systematically Refactoring 

Inheritance to Delegation in Java ; Proceedings of the 13th International 

Conference on Software Engineering, ACM Press, 2008

– Using FCA to improve type hierarchies

• Marianne Huchard and Hervé Leblanc ; Computing Interfaces in Java ; 

Proceedings of the 15th International Conference on Automated

Software Engineering, IEEE CS Press, 2000

• Naouel Moha, Amine Mohamed Rouane Hacene, Petko Valtchev, and 

Yann-Gaël Guéhéneuc ; Refactorings of Design Defects using 

Relational Concept Analysis ; Proceedings of the 6th International 

Conference on Formal Concept Analysis, Springer, 2008
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Algorithm

 Seven steps

1. Choosing where the refactoring takes place

2. Extracting interfaces from the hierarchy

3. Using FCA to create new type hierarchy

4. Creating a new class

5. Replacing inheritance with delegation (optional)

6. Making the new class a superclass of the 
classes in the extent

7. Pulling up methods in the intent to the class
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Algorithm

1. Choosing the feature to refactor is difficult
– False positives

– Ad hoc features descending from deliberate ones
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Algorithm

1. Choosing the feature to refactor is difficult
– False positives

– Ad hoc features descending from deliberate ones

Through reverse inheritance, 

the methods from this class 

are recognized as two 

independent occurrences
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Algorithm

2. Once a feature is chosen, we extract an 

interface from each (sub)type of the extent



57/88

Algorithm

2. Once a feature is chosen, we extract an 

interface from each (sub)type of the extent
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Algorithm

3. We use FCA to fix the hierarchy
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Algorithm

3. We use FCA to fix the hierarchy
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Algorithm

4. We create a new abstract class for reuse
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Algorithm

4. We create a new abstract class for reuse
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Algorithm

5. (We replace inheritance with delegation)
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Algorithm

5. (We replace inheritance with delegation)
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Algorithm

6. We make the new abstract class a 

superclass of the classes in the extent
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Algorithm

6. We make the new abstract class a 

superclass of the classes in the extent
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Algorithm

7. We pull up the method in the intent into the 

abstract class
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Algorithm

7. We pull up the method in the intent into the 

abstract class
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Algorithm

 Summary
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Limitations

 Requires many atomic refactorings, rare 

cases where all the preconditions are fulfilled

– Manual adjustments

 Requires complete separation of typing and 

reuse hierarchies

– Is that such a good idea for developers?

 Works for Java and its interfaces/classes

– Generalisation to other languages?
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Discussions
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Discussions
Each subclass 

may receive 

extra methods
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Discussions

 One solution could be 
to extend Steps 2 and 
3 to the subclasses

– Often many subclasses

– The lattice built via FCA 

would then grow a lot

– In this simple example, 

we already get 11 

interfaces in total with 

the subclasses
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Discussions

 One solution could be 
to extend Steps 2 and 
3 to the subclasses

– Often many subclasses

– The lattice built via FCA 

would then grow a lot

– In this simple example, 

we already get 11 

interfaces in total with 

the subclasses

The visibility of the methods 

could be set to protected

and then be increased later
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Discussions

PADL In padl.kernel and ….impl

 In some cases, we can 

find better refactorings
– An IGhost is an 

IConstituent and an 

IPackageGhost is an 

IPackage

– We can delete the 

duplicated methods from 
PackageDefault and 
PackageGhost
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Discussions

PADL In padl.kernel and ….impl

 However, it is hard to 

detect/handle all cases

– GLASS could be used semi-

automatically

– Developers could look at a 

feature first, and then decide 

which refactorings to apply
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Discussions

 There could also be 
cases where it is more 
convenient to keep the 
hierarchy and delegate 
to the new class
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Discussions

 There could also be 
cases where it is more 
convenient to keep the 
hierarchy and delegate 
to the new class

If Ressource contained 

many methods, reuse may 

improve if kept as the 

superclass of Machinery
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Discussions

 If there are different 
implementations, it is 
also not obvious to 
choose which one to 
pull up to the new class
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Discussions

 After applying this 
refactoring, new ad 
hoc features

– Such feature could be 

called “Abstract 

interface reuse”

• (Name is still undecided)
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Discussions

 After applying this 
refactoring, new ad 
hoc features

– Such feature could be 

called “Abstract 

interface reuse”

• (Name is still undecided)

Two independent occurrences 
of {capabilities, schedule}
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Discussions

 Does the introduction of our refactoring 

really improve code quality?

– Ad hoc features may group together classes that 
are in different packages

• Is it worth it to introduce dependencies between them?

– A method that is duplicated may have different 
implementations, thus the refactoring will not 
reduce the amount of code

• However, it might make it easier to extend the software 

in the future, as we have introduced classes/interfaces 

that facilitate code reuse
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Discussions

 Does the introduction of our refactoring 

really improve code quality?

– Ad hoc features may group together classes that 
are in different packages

• Is it worth it to introduce dependencies between them?

– A method that is duplicated may have different 
implementations, thus the refactoring will not 
reduce the amount of code

• However, it might make it easier to extend the software 

in the future, as we have introduced classes/interfaces 

that facilitate code reuse

Some methods will need to 

be redefined multiple times
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CONCLUSION
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Conclusion

 FCA-based approach to discover functional 

features in OO programs

– Including “missed” features

 FCA-based approach to suggest refactorings

– Separate types from inheritance

– Reduce code duplication
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Conclusion

 Algorithmic, reproducible approaches

– No LLMs were harmed during this research

– “Vibe coding” makes such approaches even 
more relevant and necessary
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Future Work

 Define and use quality models

– Measure relevant characteristics

– Assess trade-offs

• Code duplication vs. Extra interfaces/classes
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Future Work

 Automate the feature-refactoring approach

– Can we use the type of the parent feature to 
decide if a refactoring is necessary?

 Automate the naming of the new interfaces 

and classes

– Appropriate use of LLMs
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Main Claim

 Typing hierarchy  Reuse hierarchy


