
Luca Scistri, Imen Benzarti, Petko Valtchev,

Yann-Gaël Guéhéneuc, Ghizlane El Boussaidi, Hafedh Mili

Work licensed under Creative Commons 

BY-NC-SA 4.0 International

GLASS, a Framework for

Refactorings using FCA

Version 1.0

25/04/14



2/88

Outline

 Introduction

– Context

– Main Claim

– Research Questions

 Background

– FCA

– Refactoring

 Feature Discovery

 Feature Refactoring

 Conclusion



3/88

Disclaimer

 Two parts

– Descriptive

– Prospective



4/88

Disclaimer

 Two parts

– Descriptive

• Hafedh Mili, Imen Benzarti, Amel Elkharraz, Ghizlane

ElBoussaidi, Yann-Gaël Guéhéneuc, and Petko Valtchev ; 

Discovering Reusable Functional Features in Legacy Object-

oriented Systems ; Transactions on Software Engineering, vol. 

49, no. 7, pp. 3827–3856, IEEE CS Press, 2023

– Prospective

• Luca Scistri’s on-going research work for his master thesis on 

refactorings class hierarchies using FCA and features



5/88

INTRODUCTION



6/88

Context

 OOP

– Typically, Java

 Single inheritance of classes

 Multiple inheritance of interfaces



7/88

Context

 Problem with Java (and others)

– Inheritance plays two different roles

• Typing

• Reuse



8/88

Context

 Favour composition 
over inheritance

– Well-known solution



9/88

Context

 Favour composition 
over inheritance

– Well-known solution



10/88

Main Claim

 We should distinguish completely 

inheritance and typing

 We should distinguish typing hierarchies 

from reuse hierarchies



11/88

Main Claim

 We should distinguish completely

inheritance and typing

 We should distinguish typing hierarchies 

from reuse hierarchies

– Fine-grained typing

– Maximum reuse



12/88

Main Claim

 Typing hierarchy  Reuse hierarchy



13/88

Research Questions

 How to find typing/inheritance “misuses”?

 How to refactor these “misuses”?



14/88

BACKGROUND



15/88

Background

 FCA

 Refactoring



16/88

FCA

 Automatic classification technique

 Conceptual abstractions, or (formal) 

concepts, from individual elements

– Based on their properties



17/88

FCA



18/88

FCA



19/88

FCA



20/88

Refactoring

 “[P]rogram
restructuring 
operations”

 “[T]o be behavior 
preserving, provided 
that their preconditions 
are met”



21/88

Refactoring

 Create classes, interfaces

– Including inserting them into existing hierarchies

 Extract class

 Pull Up Method/Field

 Push Down Method/Field



22/88

FEATURE DISCOVERY



23/88

Feature Discovery

 Examples

 Hypothesis

 Related Work

 Algorithm

 Evaluations

 Limitations



24/88

Examples

 Functional features

– Functionally-cohesive 

and (relatively) self-

contained domain 

functionalities



25/88

Examples

Multiple Inheritance

 Each functional feature is 

represented by its own 

class hierarchy

 A class combining several 

features inherits from 

these class hierarchies



26/88

Examples

Delegation

 Each functional feature is 

represented by its own 

class hierarchy

 A class combining several 

features aggregate their 

classes and delegate to 

their methods



27/88

Examples

Ad Hoc

 When developers missed 

useful/reusable features

 When the same feature is, 

inadvertently, duplicated 

several times



28/88

Hypothesis

 We can define and discover (ad hoc) 

functional features using FCA



29/88

Related Work

 Among others

– Feature location

• Thomas Eisenbarth, Rainer Koschke, and Daniel 

Simon ; Locating Features in Source Code ; 

Transactions on Software Engineering, vol. 29, no. 3, 

IEEE CS Press, 2003

– Feature discovery

• Paul W. McBurney, Cheng Liu, and Collin McMillan ; 

Automated Feature Discovery via Sentence Selection 

and Source Code Summarization ; Software 

Evolution and Process, vol. 28, no. 2, Wiley, 2016



30/88

Algorithm

 Relatively straightforward

– Multiple inheritance

– Delegation



31/88

Algorithm

 Reverse inheritance

– Incidence relationship associating a class with 

the union of the elements of its sub-classes



32/88

Algorithm

 Reverse inheritance

– Incidence relationship associating a class with 

the union of the elements of its sub-classes



33/88

Algorithm

 Reverse inheritance

– Incidence relationship associating a class with 

the union of the elements of its sub-classes



34/88

Algorithm

 Reverse inheritance

– Incidence relationship associating a class with 

the union of the elements of its sub-classes



35/88

Evaluations

 Quantitative

– Precision

– No recall

 Qualitative

– Manual

 Comparison



36/88

Evaluations

Quantitative



37/88

Evaluations

Qualitative



38/88

Evaluations

Comparison

 Wuxia Jin, Ting Liu, Yuanfang Cai, Rick Kazman, Ran Mo, 

and Qinghua Zheng ; Service Candidate Identification from 

Monolithic Systems based on Execution Traces ; 

Transactions on Software Engineering, vol. 47, no. 5, pp. 

987–1007, IEEE CS Press, 2021



39/88

Limitations

 Threats to validity

– Construct: what constitutes an interesting or useful 

functional feature?

– Internal: are we reliable judges of the usefulness of the 

found functional features?

– External: can the results be generalised to other 

programs? Languages?

 No suggestions of refactorings



40/88

Limitations

 Threats to validity

– Construct: what constitutes an interesting or useful 

functional feature?

– Internal: are we reliable judges of the usefulness of the 

found functional features?

– External: can the results be generalised to other 

programs? Languages?

 No suggestions of refactorings



41/88

FEATURE REFACTORING



42/88

Feature Refactoring

 Examples

 Hypothesis

 Related Work

 Algorithm

 Limitations

 Discussions



43/88

Examples

 Ad hoc feature



44/88

Examples

 Ad hoc feature



45/88

Examples

 Ad hoc feature



46/88

Examples

 Ad hoc feature



47/88

Examples

 JHotDraw v5.2

– In CH.ifa.draw.standard

 JavaWebMail v0.7

– In net.wastl.webmail.xml

 PADL Metamodel

– In padl.kernel and padl.kernel.impl



48/88

Examples

JHotDraw CH.ifa.draw.standard



49/88

Examples

JavaWebMail net.wastl.webmail.xml



50/88

Examples

PADL padl.kernel and ….impl



51/88

Hypothesis

 We can use discovered feature and FCA 

(again) to refactor hierarchies



52/88

Related Work

 Among others

– Replacing inheritance with delegation

• Hannes Kegel and Friedrich Steimann ; Systematically Refactoring 

Inheritance to Delegation in Java ; Proceedings of the 13th International 

Conference on Software Engineering, ACM Press, 2008

– Using FCA to improve type hierarchies

• Marianne Huchard and Hervé Leblanc ; Computing Interfaces in Java ; 

Proceedings of the 15th International Conference on Automated

Software Engineering, IEEE CS Press, 2000

• Naouel Moha, Amine Mohamed Rouane Hacene, Petko Valtchev, and 

Yann-Gaël Guéhéneuc ; Refactorings of Design Defects using 

Relational Concept Analysis ; Proceedings of the 6th International 

Conference on Formal Concept Analysis, Springer, 2008



53/88

Algorithm

 Seven steps

1. Choosing where the refactoring takes place

2. Extracting interfaces from the hierarchy

3. Using FCA to create new type hierarchy

4. Creating a new class

5. Replacing inheritance with delegation (optional)

6. Making the new class a superclass of the 
classes in the extent

7. Pulling up methods in the intent to the class



54/88

Algorithm

1. Choosing the feature to refactor is difficult
– False positives

– Ad hoc features descending from deliberate ones



55/88

Algorithm

1. Choosing the feature to refactor is difficult
– False positives

– Ad hoc features descending from deliberate ones

Through reverse inheritance, 

the methods from this class 

are recognized as two 

independent occurrences



56/88

Algorithm

2. Once a feature is chosen, we extract an 

interface from each (sub)type of the extent



57/88

Algorithm

2. Once a feature is chosen, we extract an 

interface from each (sub)type of the extent



58/88

Algorithm

3. We use FCA to fix the hierarchy



59/88

Algorithm

3. We use FCA to fix the hierarchy



60/88

Algorithm

4. We create a new abstract class for reuse



61/88

Algorithm

4. We create a new abstract class for reuse



62/88

Algorithm

5. (We replace inheritance with delegation)



63/88

Algorithm

5. (We replace inheritance with delegation)



64/88

Algorithm

6. We make the new abstract class a 

superclass of the classes in the extent



65/88

Algorithm

6. We make the new abstract class a 

superclass of the classes in the extent



66/88

Algorithm

7. We pull up the method in the intent into the 

abstract class



67/88

Algorithm

7. We pull up the method in the intent into the 

abstract class



68/88

Algorithm

 Summary



69/88

Limitations

 Requires many atomic refactorings, rare 

cases where all the preconditions are fulfilled

– Manual adjustments

 Requires complete separation of typing and 

reuse hierarchies

– Is that such a good idea for developers?

 Works for Java and its interfaces/classes

– Generalisation to other languages?



70/88

Discussions



71/88

Discussions
Each subclass 

may receive 

extra methods



72/88

Discussions

 One solution could be 
to extend Steps 2 and 
3 to the subclasses

– Often many subclasses

– The lattice built via FCA 

would then grow a lot

– In this simple example, 

we already get 11 

interfaces in total with 

the subclasses



73/88

Discussions

 One solution could be 
to extend Steps 2 and 
3 to the subclasses

– Often many subclasses

– The lattice built via FCA 

would then grow a lot

– In this simple example, 

we already get 11 

interfaces in total with 

the subclasses

The visibility of the methods 

could be set to protected

and then be increased later



74/88

Discussions

PADL In padl.kernel and ….impl

 In some cases, we can 

find better refactorings
– An IGhost is an 

IConstituent and an 

IPackageGhost is an 

IPackage

– We can delete the 

duplicated methods from 
PackageDefault and 
PackageGhost



75/88

Discussions

PADL In padl.kernel and ….impl

 However, it is hard to 

detect/handle all cases

– GLASS could be used semi-

automatically

– Developers could look at a 

feature first, and then decide 

which refactorings to apply



76/88

Discussions

 There could also be 
cases where it is more 
convenient to keep the 
hierarchy and delegate 
to the new class



77/88

Discussions

 There could also be 
cases where it is more 
convenient to keep the 
hierarchy and delegate 
to the new class

If Ressource contained 

many methods, reuse may 

improve if kept as the 

superclass of Machinery



78/88

Discussions

 If there are different 
implementations, it is 
also not obvious to 
choose which one to 
pull up to the new class



79/88

Discussions

 After applying this 
refactoring, new ad 
hoc features

– Such feature could be 

called “Abstract 

interface reuse”

• (Name is still undecided)



80/88

Discussions

 After applying this 
refactoring, new ad 
hoc features

– Such feature could be 

called “Abstract 

interface reuse”

• (Name is still undecided)

Two independent occurrences 
of {capabilities, schedule}



81/88

Discussions

 Does the introduction of our refactoring 

really improve code quality?

– Ad hoc features may group together classes that 
are in different packages

• Is it worth it to introduce dependencies between them?

– A method that is duplicated may have different 
implementations, thus the refactoring will not 
reduce the amount of code

• However, it might make it easier to extend the software 

in the future, as we have introduced classes/interfaces 

that facilitate code reuse



82/88

Discussions

 Does the introduction of our refactoring 

really improve code quality?

– Ad hoc features may group together classes that 
are in different packages

• Is it worth it to introduce dependencies between them?

– A method that is duplicated may have different 
implementations, thus the refactoring will not 
reduce the amount of code

• However, it might make it easier to extend the software 

in the future, as we have introduced classes/interfaces 

that facilitate code reuse

Some methods will need to 

be redefined multiple times



83/88

CONCLUSION



84/88

Conclusion

 FCA-based approach to discover functional 

features in OO programs

– Including “missed” features

 FCA-based approach to suggest refactorings

– Separate types from inheritance

– Reduce code duplication



85/88

Conclusion

 Algorithmic, reproducible approaches

– No LLMs were harmed during this research

– “Vibe coding” makes such approaches even 
more relevant and necessary



86/88

Future Work

 Define and use quality models

– Measure relevant characteristics

– Assess trade-offs

• Code duplication vs. Extra interfaces/classes



87/88

Future Work

 Automate the feature-refactoring approach

– Can we use the type of the parent feature to 
decide if a refactoring is necessary?

 Automate the naming of the new interfaces 

and classes

– Appropriate use of LLMs



88/88

Main Claim

 Typing hierarchy  Reuse hierarchy


